101 головоломка

Перельман Яков Исидорович

Решения задач 1-10

 

1. Ниже указан самый короткий способ обмена. Цифры показывают, с какого пня на какой надо прыгать (например, 1–5 означает, что белка прыгает с 1-го пня на 5-й). Всех прыжков понадобится 16, а именно:

1-5;

3 – 7, 7–1;

8 – 4, 4–3, 3–7;

6 – 2, 2–8, 8–4, 4–3;

5 – 6, 6–2, 2–8;

1 – 5, 5–6;

7-1.

2. Для удобства заменим чайную посуду цифрами. Тогда задача представится в таком виде: надо поменять местами предметы 2 и 5.

Рис. 11. Задачи о перестановке чайной посуды.

Вот порядок, в каком их следует передвигать на свободный квадрат: 2, 5, 4, 2,1,3, 2, 4, 5,1,4, 2, 3,4,1,5, 2.Задача решается в 17 ходов; более короткого решения нет.

3. В таблице показаны по порядку все переезды, необходимые для того, чтобы помочь заведующему гаражом выйти из затруднительного положения. Цифры обозначают номера автомобилей, а буквы – соответствующие помещения. (6-С означает, что автомобиль 6 ставится в отделение Сит. п.) Всех переездов понадобится 43. Вот они:

4. Три непересекающихся пути показаны на рис. 12. И Петру, и Павлу приходится идти довольно извилистой дорогой – но зато братья избегают нежелательных встреч.

5. Стрелки на рис. 13 показывают, какие мухи переменили место и с каких клеток они пересели.

Рис. 12. Три непересекающихся пути.

6. Забор можно поставить двумя способами (рис. 14 а, б). Забор, построенный по второму плану, короче и, следовательно, дешевле.

7. Вот единственное расположение, при котором 2 дома находятся в безопасности от нападения извне (рис. 15).

Рис. 13. Мухи на занавеске (в новой позиции).

Все 10 домов расположены здесь, как требовалось в задаче: по 4 на каждой из пяти прямых стен.

8. Деревья, оставшиеся несрубленными, расположены так, как показано на рис. 16. Как видите, они действительно образуют 5 прямых рядов, и в каждом ряду 4 дерева.

Рис. 14 а, б. Как оградить озеро от коров.

Рис. 15. Дома и стены (два дома в безопасности).

9. Кошка должна съесть первой ту мышь, которая находится у кончика ее хвоста (рис. 9). Попробуйте, начав с этой мыши счет по часовой стрелке, зачеркивать каждую 13-ю мышь, и вы убедитесь, что белая мышь будет зачеркнута последней.

Рис. 16. Сад после вырубки деревьев.

Рис. 17.

10. На рис. 17 показано, как надо сложить из 18 спичек два четырехугольника, чтобы один был втрое больше другого по площади. Второй четырехугольник является параллелограммом с высотой, равной 11/2 спичкам. Площадь параллелограмма равна его основанию, умноженному на высоту. В основании нашего параллелограмма лежат 4 спички, высота же равна 11/2 спичкам; следовательно, площадь равна 4 × 11/2, т. е. 6 таким квадратикам, каких в меньшем четырехугольнике 2. Итак, правый четырехугольник имеет площадь втрое большую, нежели левый.