Два шага до чуда

Васин Михаил Дмитриевич

ПУСТЬ НЕ ПЛАЧЕТ ГЕВЕЯ

 

Открытие, которого никто не заметил. — Сэр Макинтош. — Как жарят галоши? — Слезы гевеи и пот рабов. — Резиновые ноги цивилизации. — Шина из спирта. — Сын природы против синтетической рати. — Кондитеры мечтают о хлебе. — Гевея-одуванчик. — Как стать богатырем. — Надо шлифовать молекулы. — Младенец убивает взглядом.

НА ГАИТИ ИГРАЛИ В МЯЧ…

Что открыла экспедиция Колумба?

Если бы сейчас задать этот вопрос самому Колумбу, он, наверное, как и все мы, ответил бы одним словом:

— Америку.

Так уж мы привыкли издавна связывать имя великого мореплавателя с новым континентом, что о других заслугах Колумба перед человечеством совсем забыли. А ведь открытия его экспедиции отнюдь не ограничиваются Америкой. И по значению своему эти забытые открытия, как мы можем теперь судить, достойны того, чтобы люди о них помнили.

Вот, например, резиновый мяч. Первыми европейцами, которым он попал в руки, были именно спутники Колумба. Когда испанцы высадились на остров Гаити, то застали местных жителей — туземцев — за странным занятием. Они с большой серьезностью и сосредоточенностью бросали на твердую площадку какие-то коричневые шары. Эти шары, будто живые, подскакивали, туземцы их ловили, бросали снова, опять ловили…

Сейчас, конечно, игра гаитян в мяч нас вряд ли бы изумила. Может быть, мы только усмехнулись бы, что детской забавой увлекаются люди почтенного возраста. Но храбрые моряки Колумба, встречавшие во время своих путешествий столько неожиданного, все же были удивлены: таких прыгающих шаров они не видали никогда в жизни.

Передавая из рук в руки коричневый шар, матросы мяли его, нюхали, даже незаметно пробовали на зуб. Но ничего понять не могли.

— Что это? Откуда?

Туземцы рассказали, что вещество, из которого сделаны мячи, имеет чудесные свойства и что добывают его из сока особого дерева.

Этим туманным ответом моряки вполне удовлетворились. Если б, сжимая корявыми пальцами упругие шары, они могли догадаться, какая драгоценность попала им в руки, если б они могли предвидеть, что без этого коричневого вещества жизнь их потомков будет немыслимой, — если б они все это знали, они, несомненно, устроили бы самые пышные торжества по поводу сделанного открытия.

Правда, они увезли с собой несколько диковинных мячей. И дома, в Испании, рассказали об этом дорожном происшествии. Так Европа впервые узнала о каучуке. Образцы чудесного вещества попали в музеи и долго хранились там как большая редкость.

СЧАСТЛИВАЯ ОПЛОШНОСТЬ ГУДЬИРА

Но время шло. О находке на Гаити почти совсем забыли. И когда (уже в XVIII веке) член французской экспедиции в Южную Америку геодезист Кондамин попал в Бразилию, ему пришлось во второй раз открывать каучук. Он разузнал, что в девственных тропических лесах растет красивое стройное дерево гевея. Когда надрезают кору этого дерева, из раны выступает белый как молоко сок. Текут белые капли по стволу, словно слезы. Если под капли подставить чашечку, в ней соберется несколько ложек сока гевеи. Чтобы набрать полведра, надо поранить, заставить плакать 800 деревьев-красавиц…

Сок гевеи туземцы используют по-разному. Можно пропитывать им ткани — и тогда они не будут пропускать воду. Можно делать мягкие, эластичные бутылочки. Для этого из глины лепят форму в виде груши. Мажут ее «молоком» гевеи, а затем коптят в теплом дыму костра, пока сок не высохнет и не превратится в тоненькую каучуковую пленку. Снова мажут, снова коптят. И так до тех пор, пока груша не покроется слоем желто-коричневого каучука нужной толщины. Теперь нужно лишь размять глиняную форму в воде и вымыть готовую бутылочку.

А если сделать деревянную ногу, макать ее в сок и затем коптить, то в конце концов получится резиновая обувь — галоша или даже сапог.

Описания Кондамина пробудили интерес к каучуку. Из Бразилии стали все чаще привозить в Европу каучуковые бутылочки. Здесь их разрезали на полосы, пластинки и продавали. Из этих пластин каждый мог вылепить то, что ему нужно: мячик, гибкую трубку, прокладку. А английский фабрикант, по фамилии Макинтош, придумал способ растворять каучуковые пластины и покрывать такими растворами ткань. Непромокаемые пальто из этой ткани с тех пор называются макинтошами.

Наконец один делец попробовал развернуть торговлю бразильскими галошами. Однако новая обувь вызвала только насмешки: в теплую погоду галоши растягивались до колен, липли к рукам и одежде, а в холод становились жесткими и трескались.

С этими неприятными свойствами каучука — бояться высокой и низкой температуры, растворяться во многих жидкостях — долгое время бороться не умели. Но помог случай. Американец Гудьир, торговавший каучуком, уронил одну пластину на горячую плиту. Когда он это заметил, то очень испугался — ведь от сильного жара каучук портится. Гудьир схватил пластину и стал ее ощупывать, мять. Но произошло что-то неожиданное: пластина не только не испортилась, но стала гораздо более прочной, упругой, эластичной.

Гудьир изо всех сил старался сообразить, чем отличалась эта пластина от обычных. Ничем! Правда, он густо посыпал ее порошком серы, чтоб она не так липла… И даже вдавил серу внутрь… Может, в этом причина? Он сделал то же самое с другим куском каучука и положил на плиту. Этот кусок тоже стал более прочным и упругим.

Явление, открытое Гудьиром, называется вулканизацией. Благодаря ей каучук, служивший многие десятилетия лишь забавой, вызывавший насмешки острословов и карикатуристов, сразу завоевал всеобщую симпатию. Если до того, как Гудьир уронил на плиту свою пластину, в год во всем мире продавалось лишь 3 тонны каучука, то через несколько лет его стали продавать в 300 раз больше! И потребность в нем возрастала с каждым днем.

БУДЬТЕ ЗНАКОМЫ: РЕЗИНА

Галоши сейчас ни у кого не вызывают смеха — они прочны и красивы. И делать их стали по-другому, проще, быстрее. Берут каучук, добавляют в него «муки»: желтой — серы и черной — сажи, хорошо замешивают это тесто и кладут как на сковородку, в форму. Теперь подержат при высокой температуре несколько минут, и все. Форма раскрывается — перед вами черная, дымящаяся, как подгоревший блин, галоша. Она «поджарилась», завулканизировалась, и не растянется до колен, не испугается ни жары, ни холода, будет служить долго и надежно.

Примерно так «жарят» и все другие резиновые изделия. По-разному только делают тесто, или, как говорят на заводах, резиновые смеси: для галош рецепт смеси один, для автомобильных камер — другой, для покрышек третий, для прокладок, которые используются в двигателе трактора, — совсем особый.

Более ста лет используют люди вулканизацию, но почему она так преображает каучук, узнали совсем недавно, когда ученые смогли проникнуть в микромир и «рассмотрели» молекулы каучука.

Молекулы каучука в соке гевеи — это длинные нити, свернутые, как пружинки, в клубочки. Когда сок коптят, выпаривают, вода улетучивается, а оставшиеся молекулы каучука собираются вместе, переплетаются, цепляются друг за дружку. Но соединяются они не прочно. Растянешь пластинку каучука слегка — клубочки-пружинки развернутся, распрямятся, но все-таки держатся, не расползаются. Отпустишь — молекулы свернутся, потянут друг друга за собой, и вся пластинка сожмется, вернется в прежнее состояние.

Но стоит потянуть ее сильнее, как пружинки потеряют связь друг с другом, и пластинка разорвется. То же происходит при нагревании каучука: молекулы отходят друг от друга, пластинка становится мягкой, липкой и совсем непрочной. А если каучук попадает в какую-либо жидкость, то эта жидкость пробирается между молекулами, распирает их в стороны, вымывает. Пластинка растворяется.

Когда же каучук смешивают с серой и потом нагревают, то сера, словно нитка, сшивает, соединяет все молекулы-пружинки между собой. Вместо груды перепутанных, случайно зацепившихся друг за друга молекул получается прочная, густая сеть. Каучук превратился в резину. Теперь вытащить пружинку из общей массы нельзя. И разорвать всю сеть, весь кусок резины гораздо труднее, чем кусок каучука.

А если перед вулканизацией в каучук добавить еще и сажу, то ее мельчайшие частицы заполнят все пустоты, все ячеи молекулярной сети. От этого резина становится еще прочнее, долговечнее, устойчивее к высокой температуре и растворяющим жидкостям.

Но все хорошо в меру. Это правило важно и в химии. Когда в каучук подмешивают серу, нужно заботиться о том, чтобы ее не было слишком много. Иначе сеть получится очень густая и вместо мягкой, гибкой, упругой резины образуется твердый и хрупкий эбонит.

О ЧЕМ РЕВЕЛА ЦИВИЛИЗАЦИЯ

Чем лучше учились делать резину, тем большим спросом она пользовалась. Она теперь шла не только на галоши и плащи, но и на сапоги, подметки, мячи, соски, самые разнообразные трубки, шланги, приводные ремни. Все больше требовалось каучука, все больше людей с топорами и бидонами бродило с раннего утра до поздней ночи в тропических лесах, все чаще катились по стволам гевеи белые слезы.

А тут на дороги Европы и Америки выползли и зафыркали, зачихали, зарычали уродливые чудовища — телеги, бегающие сами, без лошадей. Придя в себя от изумления и присмотревшись к этим уродам, люди признали, что они гораздо достойнее и удобнее дедовских колясок с рысаками, извозчичьих пролеток с клячами, телег с могучими тяжеловозами. Детище нового времени — автомобиль — был выносливее любого рысака и сильнее любого тяжеловоза. С каждым годом он бегал быстрей, становился удобней и все больше завоевывал себе поклонников. С каждым годом из ворот заводов выкатывались, победно трубя, все новые представители автомобильного племени: легковые, грузовые, гоночные машины, а там — и броневики, вездеходы, тракторы, танки… И все они еще на заводском дворе, а потом пробежав несколько сотен километров, просили, требовали, рычали:

— Р-резины! Покр-р-рышек! Камер-р-р-р-р! Шлангов! Пр-р-рокладок!

Но вот запели в воздухе стальные птицы, им тоже без резины нельзя ни подняться с аэродрома, ни лететь, ни сесть… Их поддерживали электростанции, которым просто нечего делать, если не хватает резины для электроизоляции…

Гевея лила свои каучуковые слезы. Чтобы собрать их и заработать на кусок хлеба, с утра до ночи ходили люди от дерева к дереву, обливаясь потом. Ночью дым от костра разъедал им глаза, ладони покрывались кровавыми мозолями: надо все вертеть и вертеть над костром, коптить пудовый каучуковый каравай…

А если несчастье, если болезнь? Дождешься ли здесь, в глуши, помощи? Одни бросали все и уходили из леса. Другие умирали. Здесь же, около готовой каучуковой болванки. И тем и другим на смену приходили новые люди — много голодных и нищих на свете. Вот только гевея не могла дождаться смены, не могла уйти из леса. От нее все требовали слез — больше, больше!

Но не могла она дать больше того, что имела сама…

И вот тогда впервые были произнесены зловещие слова:

— Мир стоит на пороге каучукового голода.

Поползли вверх цены — владельцы каучуковых плантаций старались выколотить из стран, не имеющих своего каучука, побольше золота.

Трудней всех, пожалуй, приходилось Советской республике. Еще не оправившись как следует после гражданской войны, страна нуждалась во всем, и особенно — в каучуке: на всей необъятной территории России не росло ни одного, даже маленького, деревца гевеи…

Но нет ли какого-нибудь другого дерева, в соке которого содержится каучук? Может быть, такие деревья растут себе преспокойно где-либо в дальневосточной тайге или на кавказских горах, а мы и не подозреваем этого? Начались поиски. Однако время шло, а дерева, которое бы выручило нашу промышленность и дало каучук, не находилось.

ДОРОГА ВЕДЕТ К СК

Вспомнили о химии. Не поможет ли, как всегда, она? В начале 1926 года Высший Совет Народного Хозяйства СССР обратился к ученым: надо научиться синтезировать каучук в лабораториях. Срок на решение этой небывалой задачи отводился маленький — менее двух лет. К 1 января 1928 года надо было прислать в Москву 2 килограмма синтетического каучука.

Задача была очень, очень трудная. Природа «училась» делать каучук многие тысячи лет. А людям отводилось на это лишь два года! Но иного выхода у людей не было, и они принялись за дело. В Ленинграде, в химической лаборатории Военно-Медицинской академии, которой заведовал будущий академик Сергей Васильевич Лебедев, была организована специальная группа химиков. По вечерам и выходным дням, когда ученым никто не мешал, они запирались в лаборатории и отправлялись в далекие и нелегкие странствия по химическим джунглям.

Нефть, которую они пытались превратить в каучук, не поддалась. Ее оставили. Все внимание сосредоточили на спирте — том самом, из которого делают водку, который содержится в винах и который тогда вырабатывали сотнями тонн из картофеля или кукурузы.

С этим спиртом ученые делали сотни опытов. Временами казалось, что цель близка, но каждый раз их подстерегали новые препятствия, новые неожиданности.

Рассказывать об этих разочарованиях, ошибках и неудачах можно очень долго — и все равно обо всем не расскажешь. Да это и не нужно. Достаточно пройти вслед за химиками по правильной, уже найденной ими дороге, вдуматься во все, что встретится на пути, — и станет ясно, какие великие трудности им пришлось преодолеть, сколько головоломок надо было решить.

Вот эта дорога.

Через трубу, нагретую до 450°, пропускали пары спирта. Под действием сложного катализатора (особого вещества, подстегивающего, подгоняющего химическую реакцию) молекулы спирта разлагались, дробились, а их остатки соединялись по-новому. Из двух полуразрушенных спиртовых молекул образовалась одна новая — молекула газа дивинила.

Остановимся на минутку. Подумаем. Температура трубы 450°. Почему именно 450°, а не 310°, не 480? Потому, что никакая другая температура не подходит для данной реакции. Это ученые проверили на сотнях опытов. Пробовали они нагревать трубу и до 310°, и до 380°, и до 500° — результаты оказывались никудышными. И лишь когда поддерживали температуру равной 450°, реакция протекала хорошо.

Итак, подходящую температуру пришлось долго и упорно искать. Еще дольше шли поиски катализатора. Веществ, ускоряющих химические реакции, известно огромное количество. Но у каждого катализатора свой характер, свой нрав. Если он подстегивает одну реакцию, то на вторую «не обращает внимания», а третью, наоборот, замедляет. И вот из сотен и тысяч катализаторов надо выбрать один такой, который помогал бы разложению спирта и образованию газа дивинила, но не мешал ни тому ни другому…

Однако продолжим наш путь по уже найденной химиками дороге. Итак, газ дивинил получен. Если его теперь заморозить (это тоже ведь надо было найти!), то получится жидкость, на вид ничем не примечательная. Однако стоит сунуть в нее натриевую проволоку (именно натриевую, а не медную, стальную, алюминиевую, и именно проволоку, а не порошок, не брусок, не шар!), — стоит сунуть натриевую проволоку, как жидкость начнет густеть, сжиматься и выделять тепло. Это начался процесс полимеризации: молекулы дивинила, как в хороводе, хватаются друг за друга и образуют длинные полимерные цепи.

Каждая такая цепочка напоминает собой молекулу натурального каучука. Так, может быть, и само вещество, состоящее из этих цепочек, будет походить на каучук?

Когда почти все молекулы дивинила стали в свои хороводы-цепочки, ученые принялись проверять, что за вещество у них получилось. Конечно, они знали, что раз полимеризации подвергались молекулы дивинила, то должно образоваться новое вещество с названием полидивинил. Но какие свойства у полидивинила? Он оказался упругим, гибким — почти как каучук, рожденный гевеей. Попробовали сделать из него резину. Удачно. Значит, это именно то, что с таким напряжением искали, — синтетический каучук.

Задание, казавшееся неразрешимым, было выполнено. Два килограмма синтетического каучука Лебедева вместе с описанием способа его получения были отосланы в Москву 30 декабря 1927 года — за два дня до истечения срока!

Вскоре в нашей стране приступили к сооружению первых в мире заводов СК — синтетического каучука. Молекулы-пружинки рождались не в организме тропического дерева, а в раскаленном чреве стальных аппаратов — реакторов. Каучук теперь можно было получать в любом количестве. Правда, СК значительно уступал по некоторым своим качествам натуральному. Но все-таки это был каучук! Надвигавшаяся на промышленность туча была, как тогда казалось, развеяна.

КОНФУЗЛИВЫЕ РЕКОРДСМЕНЫ

Синтетическим каучуком стали заниматься во многих лабораториях. Были созданы специальные научные институты. Ученые изобретали все новые виды искусственного каучука. И каждый новорожденный СК имел свои особые, почти сказочные свойства, до которых каучуку гевеи было далеко. Один СК давал резину, которая не боится растворяющих жидкостей. Другой отлично выдерживал трение. Третий переносил жару, четвертый — мороз…

В конце концов в химических лабораториях были синтезированы тысячи различных каучукоподобных полимеров. Выпуск около двухсот видов СК (и в большом количестве) освоен на заводах. Среди них каучуки, необходимые человеку на Северном полюсе и в Антарктиде, в Сахаре, под водой, в космосе.

Но, увы, любой из этих синтетических рекордсменов все же имеет недостатки. Пожалуй, во всей синтетической семье, начиная с СК Лебедева и кончая новейшими каучуками, которым не страшны самые великие каучуковые беды, — во всем этом семействе вряд ли найдется хоть один, который, не сконфузившись, выйдет состязаться со скромным сыном гевеи по эластичности, упругости и, главное, по сумме всех положительных свойств и качеств. Все они уступают ему. А ведь именно такая резина — одновременно и прочная, и гибкая, и упругая, и долговечная, и неядовитая — больше всего и чаще всего нам нужна: для шин самолетов и для сосок, грелок, игрушек, деталей машин и хирургических перчаток… Значит, создание СК не решило проблему до конца? Нет.

Обходиться без натурального каучука во многих случаях трудно, а порой и просто невозможно. Видно, поэтому и родилось столь большое разнообразие синтетических братьев: химики все надеялись создать наконец такой СК, который, вместо того чтобы устанавливать новый рекорд по жаро-, морозо- или износостойкости, просто заменял бы натуральный…

Но ведь это странно. Химикам удается синтезировать каучуки, вызывающие всеобщее удивление и восхищение, а получить обычный, простой каучук они не могут…

По этому поводу известный химик член-корреспондент Академии наук СССР А. А. Коротков (о нем еще речь впереди) как-то заметил:

«Ученые здесь оказались похожими на незадачливых кондитеров, способных отлично приготовить пирожные, но не умеющих испечь самый обыкновенный хлеб».

Почему так получилось? Потому, что «кондитеры» никак не могли понять, в чем секрет приготовления простого «хлеба», в чем секрет прочности и других достоинств натурального каучука.

Действительно, в чем этот секрет?

«ЗЕЛЕНАЯ ЖВАЧКА»

Пока химики ломают голову над этой загадкой, вспомним о тех, кто отправился на поиски дерева, способного заменить гевею. Они не озирались на успехи химиков, делали свое дело.

Это было примерно в те годы, когда академик Лебедев и его помощники совершили великий подвиг, превратив спирт в каучук. Одна из экспедиций, искавшая «советскую гевею» в глухих уголках Тянь-Шаня, узнала, что местные жители любят для развлечения пожевать какие-то сухие корешки. Если эти корешки жевать достаточно долго, то во рту останется комочек эластичной массы, напоминающий резину.

Каждый может представить, как тревожно и радостно забились сердца у членов экспедиции, когда наконец им в руки попали и корешки, и комочки «резины». Сомнений быть не могло: это настоящий каучук!

Стали торопливо расспрашивать, как называется дерево, имеющее такие волшебные корешки.

— Кок-сагыз, — был ответ.

Возможно, местные жители плохо поняли вопрос, а может быть, это растение и в самом деле имело столь странное название («кок-сагыз» в переводе на русский означает «зеленая жвачка»). Но как бы то ни было — ученые записали в свои блокноты имя новой гевеи и попросили показать, где она растет. Путь был недолгим. Миновали ручей. Поднялись на косогор. Остановились.

— Здесь кок-сагыз, — промолвил тот, кто показывал дорогу.

Вокруг — ни деревца, ни кустика. Гости недоуменно переглянулись и уставились на провожатого. Тот, не поднимая глаз, сбивал ногой большие пушистые шары одуванчиков.

— Кок-сагыз, — сказал он снова, ударив ногой по еще одному белому шару. Стайка легких парашютиков уплыла по ветру.

Видя нерешительность гостей, провожатый опустился на колени, разгреб землю вокруг одуванчика и вытащил его вместе с корнями.

Несомненно, это были те самые корни, только не высушенные. Они легко ломались, и тогда выступала капелька густого, липкого млечного сока. Как у гевеи… Новая гевея оказалась одуванчиком…

Правда, потом выяснилось, что это вовсе не одуванчик, а особое растение, еще не известное науке. Но с одуванчиком оно действительно состоит в самом близком родстве.

Так на каучуковом горизонте появился кок-сагыз.

Не беда, что он не имел стройного ствола и красивой кроны. Его все полюбили и таким. Всюду, где только можно было, собирали его семена, присылали в Москву в созданный к тому времени специальный научно-исследовательский институт. Здесь его растили, изучали, учились добывать из него каучук. Кок-сагыз подавал большие надежды. Каучук, содержащийся в соке его корней, не уступал ни в прочности, ни в эластичности тому, что получали из гевеи. Рос он хорошо и с каждым годом захватывал все новые десятки гектаров на полях совхозов и колхозов: его начали сеять. Появившиеся было у него соперники (например, тау-сагыз) не выдержали конкуренции. На полях властвовал только кок-сагыз, «зеленая жвачка»… А вскоре стали строить заводы, где сухие ломкие корни превращались в упругий натуральный каучук.

ВЕЛИКОЛЕПНЫЙ УРОД

Да только вот беда: слишком уж дорогим получался этот каучук. Корешки — мелкие. Чтобы выкопать их из земли, нужны руки и руки. И урожай невелик. Белые шары с семенами-парашютиками припали к земле, никакой машине их не подцепить. Значит, собирать семена тоже надо вручную. Опять лишние расходы. В общем, понятно, почему в кок-сагызе начали понемногу разочаровываться.

Ну, а когда кем-нибудь недовольны, стараются перевоспитать его, заставляют измениться в лучшую сторону. Так было и здесь. Добиваться перемен в облике кок-сагыза стали многие ученые. Среди них был профессор Михаил Сергеевич Навашин. Он пользовался очень жесткими, решительными воспитательными приемами: купал, мочил кок-сагыз в растворе ядовитого химического вещества — колхицина.

И чем это кончилось? А вот чем.

Все, кто изучал ботанику, знают, что каждое растение состоит из клеток. Клетки эти растут, а когда становятся взрослыми, делятся. Из каждой большой клетки получаются две маленькие, две дочери. Дочери снова растут, снова делятся — и так до тех пор, пока само растение не станет взрослым, не принесет плоды или семена и не умрет.

Но вот когда профессор Навашин выкупал кок-сагыз в колхицине, стали происходить странные вещи. Клетки, которые уже выросли, делиться не смогли. Они, хоть это и противоречило всем правилам, принялись расти дальше, будто они вовсе и не взрослые клетки, а маленькие дочери. Увеличивались они до тех пор, пока не стали вдвое больше обычных. И лишь только теперь гигантские клетки-уроды смогли разделиться. Но дочери у них были тоже не такими, как у всех нормальных клеток, а гигантами — каждая величиной в обычную взрослую клетку. И они тоже росли и тоже производили на свет огромных дочерей и внуков.

Словом, все клетки кок-сагыза, выкупавшегося в колхицине, стали вдвое крупнее. Но если кирпичики, из которых сложено растение, увеличены, не будет ли более крупным и само растение? Именно это и произошло. Новый сорт кок-сагыза (ученые называют такие растения полиплоидными) имел более крупные листья и семена, его большой пуховый шар поднимался на прочной прямой ножке высоко над землей. Но, самое главное, у него были в полтора, а то и в два раза более крупные корни.

Этот великолепный урод — всякое отступление от нормы биологи считают уродством — гораздо быстрее рос, не боялся поздней засухи и приносил намного больший урожай корней и, следовательно, каучука, чем его дикий предок. И он стал теснить хилую «зеленую жвачку»: отвоевал себе сначала несколько гектаров земли, потом — несколько десятков, потом — несколько сотен гектаров. А затем, почувствовав свою силу, разлегся сразу на 7000 гектаров…

Профессор Навашин радовался: натуральный каучук, который даст его полиплоидный кок-сагыз в ближайшее время, будет значительно дешевле… Но мечтам профессора не суждено было осуществиться. Незаметно сгущавшаяся над кок-сагызом туча вдруг грянула молниями и громом. Разразилась катастрофа.

СЕКРЕТ НАТУРАЛЬНОГО

Молнии и гром грянули, конечно, из химической тучи, точнее говоря, из химической лаборатории. Вот как было дело.

Эта загадка — почему синтетический каучук оказывается не таким прочным и эластичным, как натуральный, — долго не давала никому покоя. Правда, сначала все казалось не таким уж непонятным. Ученым было известно, что молекула синтетического каучука — это длинная нить, цепочка, состоящая из множества одинаковых кусочков, звеньев. В каучуке Лебедева, например, каждое звено — не что иное, как маленькая молекула дивинила. Молекула же природного каучука состоит вовсе не из дивинила, а из совсем другого вещества — изопрена. Ну и все ясно: из разных химических веществ нельзя сделать одинаковые каучуки. И изопрен, наверное, больше, чем дивинил, подходит для того, чтобы каучук получался упругим и прочным…

Но если это так, то за чем же дело стало? Изопрен химики вырабатывать умеют. Надо, значит, только научиться без помощи природы соединять готовые изопреновые звенья в каучуковую молекулу-цепочку.

На это много времени не потребовалось. Новый синтетический каучук получен. Изопреновый. Точно такой же по химическому составу, как и природный. Победа? Сдерживая радость, стали испытывать и… увы! Изопреновый СК оказался еще хуже, чем дивиниловый.

Но теперь-то в чем причина? Ответа на этот вопрос долго никто дать не мог. И лишь только когда с помощью новейших приборов и методов удалось подробно исследовать каучуковые молекулы, все разъяснилось. Оказалось, различие искусственных и природного каучуков не столько в их химическом составе, сколько в том, как устроена большая молекула-пружинка. Молекула изопренового каучука, вырабатываемого гевеей, — это ровная, гладкая, идеальная цепочка. Все ее звенья строго направлены в одну и ту же сторону: к концу первого звена присоединено начало (и обязательно — начало!) второго звена; к концу второго — начало третьего. И так устроена вся цепь, вся молекула.

А вот молекула того же изопренового каучука, но синтезированного человеком в пробирке, — корявая, неаккуратная. К концу первого звена второе звено присоединяется не началом, а почему-то концом. Третье звено цепляется к первым двум не началом и даже не концом, а боком. Четвертое примкнуло к третьему тоже боком, но уже противоположным. Но это еще не все. Некоторые звенья выпятились из общего хоровода в стороны и торчат из цепи нелепыми отростками… Такую путаницу, такой беспорядок и нарочно не придумаешь! Этот хаос царит на протяжении всей цепочки-молекулы.

Когда такой каучук растягивают, его молекулы, распрямляясь, упираются друг в друга отростками, цепляются и не могут улечься рядышком стройными аккуратными пучками, как это происходит с молекулами природного каучука. Каждая корявая цепочка вынуждена выдерживать натяжение в одиночку. Но без помощи других, конечно, выдержать его долго не может, легко рвется. Рвется одна, затем другая, третья, десятая, сотая — пока не порвутся все. А значит, рвется и весь кусок каучука или резины…

Точно такая же картина предстала перед учеными, когда они исследовали дивиниловый каучук. Да и вообще у всех синтетических каучуков молекулы, как выяснилось, были устроены беспорядочно и не шли в этом отношении ни в какое сравнение со стройной и изящной цепочкой, созданной природой.

В этом и был секрет недостижимой для химии прочности природного каучука.

КАК ДОСТИГНУТЬ НЕДОСТИЖИМОГО?

Итак, секрет ясен. Значит, надо воспользоваться им и научиться, наконец, вырабатывать такой СК, который будет достойным соперником сына гевеи.

Но как построить правильную, без недостатков каучуковую молекулу искусственно? Не будешь же брать каждое звено в руки и, рассмотрев, где у него начало, где конец, приделывать его нужным образом к общей цепочке? Не будешь потому, что любое из этих звеньев ничтожно мало. Но даже если бы его можно было и увидеть и взять в руки, все равно ничего из такой затеи не выйдет. Ведь каждая каучуковая молекула-цепочка состоит из тысяч звеньев, и самый ловкий, самый сноровистый работник вряд ли смог бы «собрать» за день больше десятка готовых молекул. Сколько же это будет каучука? Чтобы заметить такое количество, придется смотреть в мощный микроскоп… Конечно, нужен другой путь. Надо сделать так, чтобы звенья, как при обычном синтезе, сами собирались в цепочки, но собирались не кое-как, а в строгом порядке.

Впрочем, и этот путь не намного легче предыдущего: все равно ведь необходимо управлять крошечными звеньями, заставлять их, перед тем как они присоединятся к цепи, определенным образом поворачиваться в пространстве. И при этом не касаться их руками. И не видеть… Задача настолько сложная, что многие ученые считали ее невыполнимой.

Правда, науке было известно, что, в принципе, существуют катализаторы, способные не только изменять скорость химических реакций, но и влиять на архитектуру создаваемых гигантских молекул полимеров. Особенно широко такие катализаторы (их называют ферментами) природа применяет при сооружении сложнейших «живых полимеров» — белков, нуклеиновых кислот, полисахаридов. И добивается, что эти высокомолекулярные изделия изготовляются внутри организма с невообразимой точностью: миллиарды молекул имеют совершенно одинаковые и одинаково расположенные в пространстве изгибы, витки, отростки, спиральные и решетчатые блоки.

Катализаторы, способные строить стереорегулярные полимеры (то есть с молекулами, все звенья которых располагаются в пространстве, строго подчиняясь определенной закономерности, — как это сделано, например, в белках), уже использовались в науке и технике. Но использовались вслепую. Когда, каким образом и какие именно вещества проявляют свои архитектурно-строительные способности, точно никто не знает. Вот и попробуй на ощупь найти среди сотен катализаторов как раз тот, который может осуществлять сборку первосортных каучуковых молекул! Да еще определить условия, наиболее благоприятные для его строительной деятельности.

И все же член-корреспондент Академии наук Алексей Андреевич Коротков заявил, что он попробует добиться этого, он будет работать над созданием правильных молекулярных цепей каучука. Если их смогла изготовить природа, то человек… Чем человек хуже природы?..

Можно было начать с того, чтобы попытаться сделать правильными молекулы лебедевского каучука: дивиниловые звенья были не столь сложно устроены, как изопреновые. Но уж если соревноваться с природой, то не стоит обманывать себя и брать задачу полегче. И Коротков сразу взялся за изопрен.

Уже первые месяцы принесли успех. Алексей Андреевич, попробовав вести опыты с несколькими новыми катализаторами, сразу напал на один из наиболее подходящих. Под действием этого катализатора звенья сами собирались в нужном порядке. Но не все. Один участок молекулы оказывался построенным правильно, затем следовал участок хаоса, потом — еще участок строгого порядка…

Это было уже большое достижение. Оставалось только понять, почему в молекуле образуются и хаотические участки. Но шел месяц за месяцем, а Коротков этого понять не мог. Сроки проходили, а результата не было, если не считать того, что из многих десятков образцов каучука, полученных им во время опытов, два (лишь два!) были очень похожими на натуральный, а их молекулы были правильными и аккуратными.

Эти два образца — тягучие, мягкие, прочные — и поддерживали его веру в то, что сделать «искусственный натуральный каучук» вполне можно. К сожалению, этой верой обладал только он. Другие же потеряли терпение. Группа химиков, которая под руководством Короткова искала новые пути в производстве каучука, была расформирована. У Алексея Андреевича остались только две помощницы-лаборантки: ему все-таки разрешили еще «попытать счастья» год-полтора.

И снова потянулись месяцы работы. Удачных результатов стало больше. Но много было и неудач. Причем и удачи и неудачи происходили в совершенно одинаковых условиях.

— Но в чем же причина? В чем?! — гневно спрашивал себя Алексей Андреевич.

В этом положении всякий бы растерялся. Растерялся и Коротков и уже не знал, что ему делать, за что хвататься. Тогда он решил начать все сначала. В это время как раз привезли с завода изопрен для опытов. Пять баллонов. Самого лучшего сорта. Самой высокой чистоты. Алексей Андреевич закупорил, запломбировал и спрятал под замок четыре. Оставил для опытов только один.

Работа продолжалась. Весь первый баллон иссяк до дна, но хорошего каучука получить не удалось ни разу. Вынули второй баллон. Пролетели дни, опустел и этот. Результат тот же. Пришла очередь третьего. И — о чудо! — первый же опыт дал каучук превосходного качества. Еще опыт, еще… Почти каждый раз успех. Взяли изопрен из четвертого баллона. Нет, не получается. Из пятого. Тоже плохо. Но зато третий каждый раз давал хороший результат.

Значит, дело в изопрене. Неодинаков он в баллонах. Срочно произвели самый тщательный анализ. И выяснили: во всех баллонах изопрен имел ничтожную примесь эфира, которую обычными способами определить было нельзя. В третьем эфира не было.

Все. Полная ясность.

С той поры Коротков всегда добивался наивысшей чистоты изопрена. И всегда получал каучук, который все принимали за природный.

Невозможное совершилось. «Искусственный натуральный» родился. И хотя он еще был слабым младенцем, хотя еще не было построено ни одного завода для его выпуска, соперничать с ним кок-сагыз не смог. И дикий, и полиплоидный — тот, который подавал такие большие надежды… Младенец, едва вышедший из пробирки, убил гиганта. Одним взглядом.

Сейчас о кок-сагызе уже забыли. Зато работают заводы, которые выпускают «искусственный натуральный». Созданы и другие СК с правильными, стройными молекулами.

Теперь химия может гордиться своими сыновьями. Среди них есть сейчас и скромные, но старательные труженики, соперники натурального, которые нужны ежедневно, всем и повсюду.

Обо всех рекордах каучуков не расскажешь — столь талантливо это обширное семейство. И трудолюбиво. Сегодня из СК изготовляется множество видов изделий самого различного назначения, с самыми разными свойствами.

В судьбе каучука началась новая эпоха. И все благодаря стараниям этой доброй волшебницы — химии.