Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний.

Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.

Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.

Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Часть первая

Занимательная математика

Предисловие

В поисках средств для оживления в широких кругах интереса к математике мне пришла мысль собрать ряд произведений, трактующих математические темы в беллетристической или полубеллетристической форме, и предложить их читателю с соответствующими комментариями. Число таких произведений, конечно, весьма ограничено. Этим объясняются скромные размеры настоящего сборника. Однако затрагиваемые в нем математические темы все же довольно разнообразны: относительность пространства и времени, четырехмерный мир, расчеты из области небесной механики, вопросы математической географии, комбинаторика и исполинские числа, приложение математического анализа к играм, неопределенный анализ, уравнения. Можно надеяться, что этот небольшой сборник натолкнет иных читателей на более серьезные размышления и побудит к систематическому ознакомлению с тем или иным отделом математики.

Настоящий сборник является первым известным мне опытом подобного рода.

Я. И.

На мыльном пузыре

[1]

Машина времени

На комете

Однажды - 27 июня - профессор Розетт бомбой влетел в общую залу, где собрались капитан Сервадак, лейтенант Прокофьев, Тимашев и ординарец Бен-Зуф.

Предшественник Нансена

- Вы верите, что Нансен открыл северный полюс? - спросил я старого моряка, моего приятеля, когда интересная весть разнеслась по Европе

[26]

.

Часть вторая

Занимательная арифметика

Предисловие

На русском языке имеется целый ряд оригинальных и переводных сборников

[39]

, преследующих в общем ту же цель, что и настоящая книга: оживить школьную математику введением в нее интересных задач, занимательных упражнений, любопытных теоретических и практических сведений. Знакомым с этой литературой хорошо известно, что большинство подобных книг усердно черпают свой материал из одного и того же ограниченного фонда, накопленного столетиями; отсюда - близкое сходство этих сочинений, разрабатывающих, с различной детальностью, почти одни и те же темы. Но традиционный инвентарь математических развлечений достаточно уже исчерпан в нашей литературе. Новые книги этого рода должны привлекать новые сюжеты.

«Занимательная арифметика» представляет в большей своей части попытку предложить ряд новых, еще не разрабатывавшихся сюжетов арифметических развлечений. Подыскание новых тем в столь многосторонне обследованной области - дело нелегкое: составитель не может здесь пользоваться коллективным трудом длинного ряда известных и безызвестных собирателей, а предоставлен лишь собственным силам. Поэтому к «Занимательной арифметике», как к первому опыту обновления традиционного материала подобных сборников, не должна прилагаться слишком строгая мерка.

Другая особенность предлагаемого сборника та, что он ограничивается материалом чисто арифметическим, стремясь возможно теснее примкнуть к различным отделам школьной арифметики. Развлечения, хотя бы и занимательные, но не затрагивающие ни одного из ее отделов, не нашли себе места в книге.

Наконец, заботясь о том, чтобы сборник читался легко, не требуя чрезмерного напряжения, составитель избегал трудных, запутанных вопросов и включал только такой материал, который вполне посилен для большинства читателей. Превращать приятную игру ума в утомительное занятие, чересчур серьезное для развлечения и слишком бесплодное для серьезной работы - значило бы извращать цель и смысл подобного рода литературы.

Глава I

Старое и новое о цифрах и нумерации

Таинственные знаки

В первые дни русской революции, в марте 1917 года, жители Ленинграда (тогда - Петрограда) были немало озадачены и даже встревожены таинственными знаками, появившимися, неизвестно как, у дверей многих квартир. Молва приписывала этим знакам разнообразные начертания. Те знаки, которые мне пришлось видеть, имели форму восклицательных знаков, чередующихся с крестами, какие ставились раньше возле фамилий умерших По общему убеждению, они ничего хорошего означать не могли и вселяли страх в растерянных граждан.

По городу пошли зловещие слухи. Заговорили о грабительских шайках, помечающих квартиры своих будущих жертв. «Комиссар города Петрограда», успокаивая население, утверждал, что «таинственные знаки, которые чьей-то невидимой рукой делаются на дверях мирных обывателей в виде крестов, букв, фигур, как выяснилось по произведенному дознанию, делаются провокаторами и германскими шпионами»; он приглашал жителей все эти знаки стирать и уничтожать, «а в случае обнаружения лиц, занимающихся этой работой, задерживать и направлять по назначению».

Таинственные восклицательные знаки и зловещие кресты появились также у дверей моей квартиры и квартир моих соседей. Некоторый опыт в распутывании замысловатых задач помог мне, однако, разгадать нехитрый и нисколько не страшный секрет этой тайнописи.

«Таинственные знаки».

«В связи с таинственными знаками, появившимися на стенах многих петроградских домов, небесполезно разъяснить смысл одной категории подобных знаков, которые, несмотря на зловещее начертание, имеют самое невинное происхождение. Я говорю о знаках такого типа:

Подобные знаки замечены во многих домах на черных лестницах у дверей квартир. Обычно знаки этого типа имеются у всех дверей данного дома, причем в пределах одного дома двух одинаковых знаков не наблюдается. Их мрачное начертание, естественно, внушает тревогу жильцам. Между тем, смысл их, вполне невинный, легко раскрывается, если сопоставить их с номерами соответствующих квартир. Так, например, приведенные выше знаки найдены мною у дверей квартир № 12, № 25 и № 33:

Старинная народная нумерация

Откуда взяли ленинградские дворники этот простой способ обозначения чисел: кресты - десятки, палочки - единицы? Конечно, не придумали этих знаков в городе, а привезли их из родных деревень. Нумерация эта давно уже в широком употреблении и понятна каждому, даже неграмотному крестьянину в самом глухом углу нашего Союза. Восходит она, без сомнения, к глубокой древности и употребительна не только у нас. Не говоря уже о родстве с китайскими обозначениями, бросается в глаза и сходство этой упрощенной нумерации с римской: и в римских цифрах палочки означают единицы, косые кресты - десятки.

Любопытно, что народная нумерация эта некогда была даже у нас узаконена: по такой именно системе, только более развитой, должны были вестись сборщиками податей записи в податной тетради. «Сборщик, - читаем мы в старом Своде Законов, - принимая от кого-либо из домохозяев вносимые к нему деньги, должен сам, или через писаря, записать в податной тетради против имени того домохозяина, которого числа сколько получено денег, выставляя количество принятой суммы цифрами и знаками. Знаки сии для сведения всех и каждого ввести повсеместно одинаковые, а именно:

Например, двадцать восемь рублей пятьдесять семь копеек три четверти:

Секретные торговые меты

На вещах, купленных у офеней

[44]

или в частных магазинах, особенно провинциальных - вы, вероятно, замечали иногда непонятные буквенные обозначения вроде

Это не что иное, как цена вещи без запроса, которую торговец для памяти обозначает на товаре, но так, однако, чтобы ее не мог разгадать покупатель. Бросив взгляд на эти буквы, торговец сразу проникает в их скрытый смысл и, сделав надбавку, называет покупателю цену с запросом.

Такая система обозначения весьма проста, - если только знать «ключ» к ней. Торговец выбирал какое-нибудь слово, составленное из 10 различных букв; чаще всего останавливали выбор на словах: трудолюбие, правосудие, ярославецъ, миролюбецъ, Миралюбовъ. Первая буква слова означает - 1, вторая - 2, третья - 3 и т. д.; десятою буквою обозначается нуль. С помощью этих условных букв-цифр торговец и обозначает на товарах их цену, храня в строгом секрете «ключ» к своей системе обозначения.

Арифметика за завтраком

После сказанного легко сообразить, что числа можно изображать не только с помощью цифр, но и с помощью любых иных знаков или даже предметов - карандашей, перьев, линеек, резинок и т. п.; надо только условиться приписывать каждому предмету значение какой-нибудь определенной цифры. Можно даже, ради курьеза, с помощью таких цифр-предметов изображать действия над числами - складывать, вычитать, умножать, делить. Вот, например, ряд действий над числами, обозначенный предметами сервировки стола (см. рис.). Вилка, ложка, нож, кувшинчик, чайник, тарелка - все это знаки, каждый из которых заменяет определенную цифру.

Глава II

Потомок древнего абака

Чеховская головоломка

Припомним ту, в своем роде знаменитую арифметическую задачу, которая так смутила семиклассника Зиберова из Чеховского рассказа «Репетитор»:

«Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он того и другого, если синее стоило 5 руб. за аршин, а черное 3 руб.?»

Русские счеты

Есть много полезных вещей, которых мы не ценим только потому, что, постоянно находясь у нас под руками, они превратились в слишком обыкновенный предмет домашнего обихода. К числу таких недостаточно ценимых вещей принадлежат и наши конторские счеты - русская народная счетная машина, представляющая собою видоизменение знаменитого «абака», или «счетной доски» наших отдаленных предков. Древние народы - египтяне, греки, римляне - употребляли при вычислениях счетный прибор «абак», очень походивший на наши десятикосточковые счеты. Это была доска (стол), разграфленная на полосы, по которым передвигали особые шашки, игравшие роль косточек наших счетов. Такой вид имел греческий абак. Абак римский имел форму медной доски с желобами (прорезами), в которых передвигались кнопки. Родственен абаку перуанский «квипос» - ряд ремней или бечевок с завязанными на них узлами; этот счетный прибор получил особенное распространение среди первоначальных обитателей Южной Америки, но, без сомнения, был в употреблении также и в Европе (см. далее статью «Отголоски старины»,

стр. 166

).

В средние века вплоть до XVI в. подобные приспособления были широко распространены в Европе. Но в наши дни видоизмененный абак - счеты - сохранился, кажется, только у нас да в Китае (семикосточковые счеты, «суан-пан»

[48]

). Запад не знает десятикосточковых счетов, - вы не найдете их ни в одном магазине Европы. Быть может, потому-то мы и не ценим этого счетного прибора так высоко, как он заслуживает, смотрим на него, как на какую-то наивную кустарную самодельщину в области счетных приборов.

Между тем, мы вправе были бы гордиться нашими конторскими счетами, так как при изумительной простоте устройства они, по достигаемым на них результатам, могут соперничать в некоторых отношениях даже со сложными, дорогостоящими счетными машинами западных стран. В умелых руках этот нехитрый прибор делает порою настоящие чудеса. Иностранцы, впервые знакомящиеся с нашими счетами, охотно признают это и ценят их выше, нежели мы сами. Специалист, заведовавший одной из крупных русских фирм по продаже счетных машин, рассказывал мне, что ему не раз приходилось изумлять русскими счетами иностранцев, привозивших ему в контору образцы сложных счетных механизмов. Он устраивал состязания между двумя счетчиками, из которых один работал на дорогой заграничной «аддиционной» машине (т. е. машине для сложения), другой же пользовался обыкновенными счетами. И случалось, что последний, - правда, большой мастер своего дела, - брал верх над обладателем заморской диковинки в быстроте и точности вычислений. Бывало и так, что иностранец, пораженный быстротой работы на счетах, сразу же сдавался и складывал свою машину обратно в чемодан, не надеясь продать в России ни одного экземпляра.

Умножение на счетах

Вот несколько приемов, пользуясь которыми всякий, умеющий быстро складывать на счетах, сможет проворно выполнять встречающиеся на практике примеры умножения.

Умножение на 2 и на 3 заменяется двукратным и троекратным сложением.

При умножении на 4 умножают сначала на 2 и складывают этот результат с самим собою.

Умножение числа на 5 выполняется на счетах так: переносят все число одной проволокой выше, - т. е. умножают его на 10, а затем делят это 10-кратное число пополам (как делить на 2 с помощью счетов - мы уже объяснили выше, на

стр. 159

).

Деление на счетах

Выполнять деление с помощью конторских счетов гораздо труднее, чем умножать; для этого нужно запомнить целый ряд особых приемов, подчас довольно замысловатых. Интересующимся ими придется обратиться к специальным руководствам. Здесь укажу лишь, ради примера, удобные приемы деления с помощью счетов на числа первого десятка (кроме числа 7, способ деления на которое чересчур сложен).

Как делить на 2, мы уже знаем (

стр. 159

) - способ этот очень прост.

Гораздо сложнее прием деления на 3: он состоит в замене деления умножением на бесконечную периодическую дробь 3,3333… (известно, что 0,333… =

1

/

3

). Умножать с помощью счетов на 3 мы умеем; уменьшать в 10 раз тоже несложно: надо лишь переносить делимое одной проволокой ниже. После недолгого упражнения этот прием деления на 3, на первый взгляд длинноватый, оказывается довольно удобным на практике.

Деление на 4, конечно, заменяется двукратным делением на 2.

Улучшение счетов

Какие косточки на наших конторских счетах являются совершенно излишними?

Глава III

Немного истории

«Трудное дело - деление»

Зажигая привычным движением спичку, мы иной раз еще задумываемся над тем, каких трудов стоило добывание огня нашим предкам, даже не очень отдаленным. Но мало кто подозревает, что и нынешние способы выполнения арифметических действий тоже не всегда были так просты и удобны, так прямо и быстро приводили к результату. Предки наши пользовались гораздо более громоздкими и медленными приемами. И если бы школьник XX века мог перенестись за четыре, за три века назад, он поразил бы наших предков быстротой и безошибочностью своих арифметических выкладок. Молва о нем облетела бы окрестные школы и монастыри, затмив славу искуснейших счетчиков той эпохи, и со всех сторон приезжали бы учиться у нового великого мастера счетного дела.

Особенно сложны и трудны были в старину действия умножения и деления - последнее всего больше. Тогда не существовало еще, как теперь, одного выработанного практикой приема для каждого действия. Напротив, в ходу была одновременно чуть не дюжина различных способов умножения и деления - приемы один другого запутаннее, твердо запомнить которые не в силах был человек средних способностей. Каждый учитель счетного дела держался своего излюбленного приема, каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия. И все эти приемы умножения - «шахматами, или органчиком», «загибанием», «по частям, или в разрыв», «крестиком», «решеткой», «задом наперед», «ромбом», «треугольником», «кубком или чашей», «алмазом» и прочие

[50]

, а также все способы деления, носившие не менее затейливые наименования, соперничали друг с другом в громоздкости и сложности. Усваивались они с большим трудом и лишь после продолжительной практики. Признавалось даже, что для овладения искусством быстрого и безошибочного умножения и деления многозначных чисел нужно особое природное дарование, исключительные способности; рядовым людям премудрость эта недоступна. «Трудное дело - деление» гласила старинная латинская поговорка; оно и в самом деле было трудно, если принять во внимание утомительные методы, какими выполнялось тогда это действие. Нужды нет, что способы эти носили подчас довольно игривые названия: под веселым названием скрывался длиннейший ряд запутанных манипуляций. В XVI веке кратчайшим и удобнейшим способом считалось, например, деление «лодкой, или галерой». Знаменитый итальянский математик того времени Николай Тарталья (XVI век) в своем обширном учебнике арифметики писал о нем следующее.

«Второй способ деления называется в Венеции

Читается это очень весело: так и настраиваешься скользить по числовому морю на парусах арифметической галеры. Но хотя старинный математик и рекомендует этот способ как - «самый изящный, самый легкий, самый верный, самый употребительный и самый общий из существующих, пригодный для деления всех возможных чисел», - я не решаюсь все же его изложить здесь из опасения, что даже терпеливый читатель закроет книгу в этом скучном месте и не станет читать дальше. Между тем, этот утомительный способ действительно был самым лучшим в ту эпоху, а у нас в России употреблялся до середины XVIII века: в «Арифметике» Леонтия Магницкого

Мудрый обычай старины

Добравшись после утомительных трудов до желанного конца арифметического действия, предки наши считали необходимым непременно проверить этот в поте лица добытый итог. Громоздкие приемы вызывали недоверие к их результатам. На длинном, извилистом пути легче заблудиться, чем на прямой дороге современных приемов. Отсюда естественно возник старинный обычай проверять каждое выполняемое арифметическое действие - похвальное правило, которому не мешало бы и нам следовать.

Любимым приемом поверки был так называемый «способ 9». Этот изящный прием, который полезно и теперь знать каждому, нередко описывается и в современных арифметических учебниках, особенно иностранных. Правда, он почему-то мало теперь употребляется на практике, но это нисколько не умаляет его достоинств.

Поверка девяткой основана на «правиле остатков», гласящем: остаток от деления суммы на какое-либо число равен сумме остатков от деления каждого слагаемого на то же число. Точно так же остаток произведения равен произведению остатков множителей. С другой стороны, известно также

[54]

, что при делении числа на 9 получается тот же остаток, что и при делении на 9 суммы цифр этого числа; например, 758 при делении на 9 дает остаток 2, и то же получается в остатке от деления (7 + 5 + 8) на 9. Сопоставив оба указанных свойства, мы и приходим к приему поверки девяткой, т. е. делением на 9. Покажем на примере, в чем он состоит.

Пусть требуется проверить правильность сложения следующего столбца:

Хорошо ли мы множим?

Старинные способы умножения были неуклюжи и неудобны, - но так ли хорош наш нынешний способ, чтобы в нем невозможны были уже никакие дальнейшие улучшения? Нет, наш способ безусловно не является совершенным; можно придумать еще более быстрые или еще более надежные. Из нескольких предложенных улучшений (ср. гл. VII) укажем пока одно, увеличивающее не быстроту выполнения действия, а его надежность. Оно состоит в том, что при многозначном множителе начинают с умножения не на последнюю, а на первую цифру множителя. Выполненное на

стр. 175-й

умножение 8713 x 264 примет при этом такой вид:

Преимущество подобного расположения в том, что цифры частных произведений, от которых зависят первые, наиболее ответственные цифры результата, получаются в начале действия, когда внимание еще не утомлено и, следовательно, вероятность сделать ошибку наименьшая. (Кроме того, способ этот упрощает применение так называемого «сокращенного» умножения, о котором мы здесь распространяться не можем

[55]

.)

Русский способ умножения

Вы не можете выполнить умножения многозначных чисел - хотя бы даже двузначных, - если не помните наизусть всех результатов умножения однозначных чисел, т. е. того, что называется таблицей умножения. В старинной «Арифметике» Магницкого, о которой мы раньше упоминали, необходимость твердого знания таблицы умножения воспета в таких - надо сознаться, чуждых для современного слуха - стихах:

Аще кто не твердит

таблицы и гордит,

Из страны пирамид

Весьма вероятно, что сейчас описанный способ дошел до нас из глубочайшей древности и из отдаленной страны - из Египта. Мы мало знаем, как производили действия обитатели древней Страны Пирамид. Но сохранился любопытный документ - папирус, на котором записаны арифметические упражнения ученика одной из землемерных школ древнего Египта; это так называемый «папирус Ринда», относящийся ко времени между 200 и 1700 гг. до нашей эры

[56]

и представляющий собою копию еще более древней рукописи, переписанную неким Аамесом. Писец

[57]

Аамес, найдя «ученическую тетрадку» этой отдаленнейшей эпохи, тщательно переписал все арифметические упражнения будущего землемера, - вместе с их ошибками и исправлениями учителя, - и дал своему списку торжественное заглавие, которое дошло до нас в следующем неполном виде:

«Наставление, как достигнуть знания всех темных вещей… всех тайн, сокрытых в вещах.

Составлено при царе Верхнего и Нижнего Египта Ра-а-усе, дающем жизнь, по образцу древних сочинений времен царя Ра-ен-мата писцом Аамесом».

Глава IV

Недесятичные системы счисления

Загадочная автобиография

Эту главу позволю себе начать с задачи, которую я придумал когда-то для читателей одного распространенного тогда журнала

[59]

в качестве «задачи на премию». Вот она:

Простейшая система счисления

Вообще нетрудно сообразить, что в каждой системе высшая цифра, какая может понадобиться, равна основанию этой системы без единицы. Например, в 10-ичной системе высшая цифра 9, в 6-ричной - 5, в троичной - 2, в 15-ричной - 14, и т. д.

Самая простая система счисления, конечно, та, для которой требуется меньше всего цифр. В десятичной системе нужны 10 цифр (считая и 0), в пятиричной - 5 цифр, в троичной - 3 цифры (1, 2 и 0), в двоичной - только 2 цифры (1 и 0). Существует ли и «единичная» система? Конечно: это система, в которой единицы высшего разряда в один раз больше единицы низшего, т е. равны ей; другими словами, «единичной» можно назвать такую систему, в которой единицы всех разрядов имеют одинаковое значение. Это самая примитивная «система»; ею пользуется первобытный человек, делая на дереве зарубки по числу сосчитываемых предметов. Но между нею и всеми другими системами счета есть громадная разница: она лишена главного преимущества нашей нумерации - так называемого поместного значения цифр. Действительно: в «единичной» системе знак, стоящий на 3-м или 5-м месте, имеет то же значение, что и стоящий на первом месте. Между тем даже в двоичной системе единица на 3-м месте (справа) уже в 4 раза (2 x 2) больше, чем на первом, а на 5-м - в 16 раз больше (2 x 2 x 2 x 2). Поэтому система «единичная» дает очень мало выгоды, так как для изображения какого-нибудь числа по этой системе нужно ровно столько же знаков, сколько было сосчитано предметов: чтобы записать сто предметов нужно сто знаков, в двоичной же - только семь («1100100»), а в пятиричной - всего три («400»).

Вот почему «единичную» систему едва ли можно назвать «системой»; по крайней мере, ее нельзя поставить рядом с остальными, так как она принципиально от них отличается, не давая никакой экономии в изображении чисел. Если же ее откинуть, то простейшей системой счисления нужно признать систему двоичную, в которой употребляются всего две цифры: 1 и 0. При помощи 1-цы и 0 можно изобразить все бесконечное множество чисел! На практике система эта мало удобна - получаются слишком длинные числа

Необычайная арифметика

К арифметическим действиям мы привыкли настолько, что выполняем их автоматически, почти не думая о том, что мы делаем. Но те же действия потребуют от нас немалого напряжения, если мы пожелаем применить их к числам, написанным не по десятичной системе. Попробуйте, например, выполнить сложение следующих двух чисел, написанных по пятиричной системе:

Чет или нечет?

Не видя числа, трудно, конечно, угадать, какое оно - четное или нечетное. Но не думайте, что вы всегда сможете сказать это, едва увидите задаваемое число. Скажите, например, четное или нечетное число 16?

Если вам известно, что оно написано по десятичной системе, то, без сомнения, можно утверждать, что число это - четное. Но когда оно написано по какой-либо другой системе - можно ли быть уверенным, что оно изображает непременно четное число?

Дроби без знаменателя

Мы привыкли к тому, что без знаменателя пишутся только десятичные дроби. Поэтому с первого взгляда кажется, что написать прямо без знаменателя дробь

2

/

7

или

1

/

3

нельзя. Дело представится нам, однако, иначе, если вспомним, что дроби без знаменателя возможны и в других системах счисления. Что, например, означает дробь «0,4» в пятиричной системе? Конечно,

4

/

5

. Дробь «1,2» в семиричной системе означает 1

2

/

7

. А что означает в той же семиричной системе дробь «0,33»? Здесь результат сложнее:

3

/

7

+

3

/

49

=

24

/

49

.